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Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide

J. Barthes, G. Colas des Francs,* A. Bouhelier, J.-C. Weeber, and A. Dereux
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS – Université de Bourgogne, 9 Avenue A. Savary,
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We theoretically investigate the spontaneous emission of a point-like dipolar emitter located near a two-
dimensional plasmonic waveguide of arbitrary form. We invoke an explicit link with the density of modes of the
waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form
expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations.
Radiative and nonradiative contributions to the spontaneous emission are also discussed in detail.
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In 1946, Purcell demonstrated that spontaneous emission of
a quantum emitter is modified when located inside a cavity.1

A critical parameter is the ratio Q/Veff , where Q and Veff

refer to the cavity mode quality factor and effective volume,
respectively. In the weak-coupling regime, the Purcell factor
Fp quantifies the emission rate γ inside the cavity compared
to its free-space value γ0

Fp = γ

n1γ0
= 3

4π2

(
λ

n1

)3
Q

Veff
, (1)

where λ is the emission wavelength and n1 the cavity optical
index. When Q/Veff is high enough, a strong-coupling regime
occurs with reversible energy exchange between the emitter
and the cavity mode (Rabi oscillations).2 The design of cavities
maximizing this ratio in order to control spontaneous emission
is extremely challenging. There is however a trade off between
Q factor and effective volume. On one side, ultrahigh Q
(∼109) are obtained in microcavities but with large effective
volume (∼103 μm3). On the other side, diffraction-limited
mode volumes [Veff ∼ (λ/n1)3] are achieved in photonic
crystals but at the price of weaker quality factors (Q ∼ 105).
Moreover, it is sometimes preferable to optimize Q/Veff but
keeping a reasonable Q factor in order to efficiently extract
the signal from the cavity. Additionally, the emitter spectrum
can be large at ambient temperature, and better coupling
is expected with low-Q cavities3 (i.e., matching cavity and
emitter impedances4).

In this context, it has been proposed to replace the
cavity (polariton) mode by a surface plasmon polariton
(SPP) sustained by metallic structures as an alternative to
cavity quantum electrodynamics.5,6 SPP can have extremely
reduced effective volume, ensuring high coupling rate with
quantum emitters, albeit a poor quality factor [Q ∼ 100
(Ref. 7)]. Particularly, coupling an emitter to a plasmonic
wire sheds new light on manipulating a single photon source
at a strongly subwavelength scale, with applications for
quantum information processing.8 Others promising appli-
cations deal with the realization of integrated plasmonic
amplifiers.9–11 Highly resolved surface spectroscopy was
also pointed out based either on the antenna effect12 or
coupling dipolar emission to an optical fiber via a plasmonic
structure.13,14

In this work, we present an original approach for calculating
rigorously the coupling of a dipolar emitter to two-dimensional

(2D) plasmonic waveguides of arbitrary profile. We achieve a
closed-form expression for the coupling rate into the guided
SPP. We also investigate the radiative and nonradiative chan-
nels. In particular, the contribution of the plasmon, difficult to
estimate otherwise,5,15 is clearly established. Our method is
general and treats equivalently bound and leaky waveguides
of arbitrary cross section, possibly on a substrate (Fig. 1).

According to Fermi’s golden rule, coupling of a quantum
emitter to a continuum of modes is governed by the (3D) local
density of states (3D-LDOS):

γ (r) = 2πω

h̄ε0
|p|2ρu(r,ω), (2)

where ρu(r,ω) is the local density of modes, projected
along the direction of the dipolar transition moment p = pu
(partial LDOS).16 r is the emitter location and ω its emission
frequency. To characterize the coupling independently of
the emitter properties, we introduce the normalized quantity
γ (r)/γ0 = ρu(r,ω)/ρ0

u(ω), where ρ0
u(ω) = ω2/6π2c3 is the

free-space partial LDOS.
Since we are interested in 2D waveguides, the main idea is to

work on the density of modes associated with the guide (bound
and radiation modes). For this purpose, we now establish
a relationship between 2D and 3D LDOS by introducing
Green’s dyad formalism. First, the 3D-LDOS is related to
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FIG. 1. Practice models. A dipolar emitter p is located at distance
d of an infinite silver cylinder of circular (a) or pentagonal (b) cross
section. (c) The dipolar emitter is located in a substrate-wire gap.
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the 3D Green’s tensor G of the system (Im and Tr refer to the
imaginary part and trace):17

ρ(r) = − k2
0

πω
Im Tr G(r,r) . (3)

In the presence of an infinitely long (2D) structure, the 3D-
Green’s tensor is expressed by a Fourier transform:

G(r,r′) = 1

2π

∫ ∞

−∞
dkzG2D(r‖,r′

‖,kz)e
−ikz(z−z′) . (4)

Then, we obtain the 3D-LDOS as a function of 2D-Green’s
dyad:

ρ(r) = − k2
0

2π2ω

∫ ∞

−∞
dkz Im Tr G2D(r‖,r‖,kz) . (5)

Equation (5) obviously reproduces the 3D-LDOS in a homo-
geneous medium of index n1. Limiting the integration range

to radiative waves, and since − k2
0

πω
Im Tr G2D

hom(r‖,r‖,kz) =
ω/2πc2 in a homogeneous medium, we obtain, as expected,
ρ0(r) = 1

2π

∫ n1k0

−n1k0
dkzω/2πc2 = n1ω

2/2π2c3. The quantity

− k2
0

πω
Im Tr G2D(r‖,r‖,kz) is generally referred as 2D-LDOS

by analogy with 3D-LDOS expression (3).18 It is a key quantity
to understand spatially and spectrally resolved electron energy
loss spectroscopy.19 Equation (5) makes then a direct link
between 2D and 3D LDOS. We however consider a slightly
different definition, more appropriate to describe a density of
guided modes:20

ρ2D(r‖,kz) = −2kz

π
Im Tr ε(r‖)G2D(r‖,r‖,kz) . (6)

The 2D Green’s dyad is separated in two contributions
G2D = G2D

ref + �G2D where G2D
ref is the 2D-Green’s dyad

without the waveguide and �G2D is the guide contribution.
This formulation separates the reference system (multilayer
substrate, homogeneous background, . . .) from the guiding
structure. It comes with εref the dielectric constant of the
reference system,

ρ2D(r‖,kz) = ρ2D
ref (r‖,kz) + �ρ2D(r‖,kz), with

ρ2D
ref = −2kz

π
Im Tr εref(r‖)G2D

ref (r‖,r‖,kz), (7)

�ρ2D = −2kz

π
Im Tr ε(r‖)�G2D(r‖,r‖,kz).

This wording separates the continuum of modes of the
reference system ρ2D

ref from the waveguide density of modes
�ρ2D . The partial 2D-LDOS is finally

�ρ2D
u (r‖,kz) = −2kz

π
Im Tr ε(r‖)[u · �G2D(r‖,r‖,kz) · u].

(8)

Figure 2 represents the radial 2D-LDOS �ρ2D
r (kz) for the

benchmark model defined in Fig. 1(a). The 2D Green’s dyad
has been numerically evaluated by applying a meshing on
the waveguide cross section.20 The main contribution is the
Lorentzian variation peaked at the effective index of the guided
SPP neff = kSPP/k0 = 2.28, and with a full width at half max-
imum inversely proportional to the mode propagation length
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FIG. 2. (Color online) (a) 2D radial LDOS variation as a function
of kz at two distances to the nanowire of Fig. 1(a). (b) Log scale
over the high momentum range. R = 20 nm, ε2 = −50 + 3.85i, λ =
1 μm, and ε1 = 2.

Lspp = 1.2 μm (inset). For kz < n1k0, the 2D-LDOS describes
scattering events and contributes to radiative rate γrad. Finally,
for kz > n1k0, LDOS takes part in the nonradiative decay
rate γNR. Indeed, the plasmon is dissipated by thermal losses.
Moreover, for very short distances, the 2D-LDOS spectrum
extends over very large values of kz [Fig. 2(b)]. This behavior is
typical for nonradiative transfer by electron-hole pair creation
in the metal.21

The coupling rate into the propagative SPP is obtained using
Eqs. (3), (5), and (8) and keeping only the plasmon contribution
by limiting the integration of Eq. (5) to kz corresponding
to the SPP resonance. This is strongly simplified by the
Lorentzian shape of the resonance and leads to the closed-form
expression11

γpl

n1γ0
= 3πλ

4n3
1kSPP

�ρ2D
u (r‖,kSPP)

Lspp
. (9)

This important result describes the emitter coupling rate to
a 2D waveguide of arbitrary cross section. It is expressed
as the overlap between the dipolar emission and the guided
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FIG. 3. (Color online) Variation of the rates as a function of
distance to the silver nanowire for a radial dipole. (a) Coupling
rate into SPP obtained using (i) our approach based on 2D-LDOS
formulation, including losses, (ii) exact lossless case, and (iii) qua-
sistatic approximation. (b) Radiation rate calculated using 2D-LDOS
formulation (solid line) or quasistatic approximation (dotted line). (c)
Comparison of the plasmon rate γpl with the total nonradiative rate
γNR.

mode profile (�ρ2D
u ) divided by the mode propagation length

in the longitudinal direction. This defines the 3D Purcell
factor for a 2D geometry. Although presented for plasmonic
waveguide, the demonstration remains valid for any 2D config-
uration (plasmonic cavity7 or waveguide,11 metal-coated3 or
dielectric22 nanofiber, . . .). In order to validate this expression,
we now compare it to the exact expression obtained by
considering coupling to a lossless waveguide:22,23

γpl

γ0
= 3πcEu(d)[Eu(d)]∗

k2
0

∫
A∞

(E × H∗) · z dA
, (10)

where (E,H) is the electromagnetic field associated with the
guided SPP. In Fig. 3(a), we compare the coupling rate into
the plasmonic channel as a function of distance to the silver
nanowire obtained using (i) closed-form expression (9), (ii)
exact expression for a lossless plasmonic waveguide (10), and
(iii) a quasistatic approximation.5

Quite surprisingly, although the exact expression neglects
dissipation, we obtain an excellent agreement with our
expression that correctly accounts for losses. In formula (9)
the ratio �ρ2D

u /Lspp is proportional to the number of guided
modes20 so that it does not depend on the losses. When losses
tend toward zero, LSPP → ∞ and �ρ2D

u → ∞ at resonance
so that �ρ2D

u /Lspp remains constant (Dirac distribution).
Equivalently, this simply reveals that the emitter couples to
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FIG. 4. (Color online) Coupling rate to guided SPP calculated
near a cylindrical wire of circular (solid red/gray line) or pentagonal
(dotted green/light gray line) cross section (R = 20 nm). The mode
profiles are shown.

the guided mode, no matter whether the energy is dissipated
by losses during propagation or propagates to infinity.

We now turn on the radiative decay rate associated with
the 2D-LDOS in the interval [−n1k0 : n1k0]. We compare
in Fig. 3(b) our numerical simulation with the quasistatic
approximation derived in Refs. 5 and 24 for the nanowire.
The quasistatic approximation underestimates the radiative
contribution to the coupling rate since it only considers the
cylindrical dipole mode.

Finally, the nonradiative decay rate γNR is determined from
2D-LDOS calculated on the evanescent domain |kz| > n1k0

which includes all the nonradiative mechanisms: joule losses
during plasmon propagation and electron-hole pair creation
into the metal. Figure 3(c) represents the plasmon and total
nonradiative rates. The nonradiative rate diverges close to the
wire surface whereas the plasmon contribution remains finite.
For large separation distances, the plasmon is the only contri-
bution to the nonradiative rate. We achieve an optimal coupling
efficiency into the guided SPP, β = γpl/(γrad + γNR) = 83%,
at d = 20 nm.

So far, we considered a silver circular nanowire embedded
in a homogeneous background to illustrate and validate our
method. In the following, we investigate the two complex
geometries depicted in Figs. 1(b) and 1(c). Figure 4 presents
the coupling rate into the SPP supported by a penta-twinned
crystalline nanowire recently characterized.25 At short dis-
tances, the coupling rate into the guided SPP is strongly
enhanced as compared to coupling to a circular wire of similar
dimensions. This is due to the strong mode confinement near
the wire corners as revealed by the mode profile.

Experimental configurations generally concern structures
deposited on a substrate. For a high-index substrate, the
otherwise bound mode becomes leaky. Note that the usual
expression (10) is then practically unenforceable due to
difficulty of normalizing the mode. Differently, expression (9),
derived in this work, is easily used even in such a situation.
Moreover, in the case of a leaky mode, it is even more difficult
to properly distinguish radiative and nonradiative contributions
to the coupling rate, as compared to the bound mode situation
treated above. Indeed, the guided plasmon contributes to
both the radiative rate (leaky part) and nonradiative transfer
(intrinsic losses). This difficulty is easily overcome using the
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FIG. 5. (Color online) Different contributions to the decay rates
for a 100 nm diameter silver wire 50 nm above a glass substrate
(ε3 = 2.25). Superstrate is air (ε1 = 1).

2D-LDOS formalism. The propagation length can be written
LSPP = (
SPP

rad + 
SPP
nrad)−1 where the radiative and nonradiative

rates have been introduced. As an example, we consider
a 100 nm silver nanowire 50 nm above a glass substrate
[Fig. 1(c)]. We calculate an effective index neff = 1.28, below
the substrate optical index, indicating a leaky mode. Its

propagation length is LSPP = 1.2 μm = 1/
SPP with 
SPP =
0.083 μm−1. The leakage rate is evaluated by canceling the
metal losses [Im(ε2) = 0]. We obtain 
SPP

rad = 0.073 μm−1.
Figure 5 shows the interplay between the various contributions
to the decay rate for an emitter placed in the wire-substrate
gap. The radiative rate γrad = γscatt + γpl,leak is the sum of
the scattering and leakage channels, and the nonradiative
rate γNR = γpl,NR + γe−h originates from plasmon losses and
electron-hole pair creation. Except for short distances, the
main decay channel is the plasmon decoupling into the
substrate. We obtain a maximum decoupling emission into
the substrate β = γpl,leak/γ = 70% for an emitter centered in
the gap (d = 25 nm).26

To conclude, we derive an explicit expression for the
coupling rate between a point-like quantum emitter and a
2D plasmonic waveguide. We define the coupling Purcell
factor into the plasmon channel whereas the radiative and
nonradiative rates are numerically investigated. This method
clearly reveals the physics underlying the complex mech-
anisms of spontaneous emission coupled to a plasmonic
guide (scattering, leakage, electron-hole pair creation, SPP
excitation).
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